
Journal of Magnetic Resonance 168 (2004) 175–185

www.elsevier.com/locate/jmr
NMR acceleration mapping in percolation model objects

Bogdan Buhai,a Aidar Hakimov,a Ioan Ardelean,b and Rainer Kimmicha,*

a Sektion Kernresonanzspektroskopie, Universit€at Ulm, 89069 Ulm, Germany
b Department of Physics, Technical University, 3400 Cluj-Napoca, Romania

Received 19 December 2003; revised 18 February 2004
Abstract

An NMR microscopy technique is described that permits direct mapping of local accelerations. The method is tested with water

flow through a random site percolation model object and compared with computational fluid dynamics simulations. A general

formalism, the ‘‘polygon rule,’’ is reported for the design of gradient pulse sequences for phase encoding of higher order motions, or,

in other words, for compensation of phase shifts by lower motional orders.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Acceleration; NMR mapping; Percolation; Porous media
1. Introduction

In recent papers [1–5] we have reported on micro-

scopic NMR mapping experiments and simulations of
transport in fluid filled percolation model objects of

porous media. The objective was to study and learn the

laws governing coherent or incoherent propagation of

measurands specifying transport under complex pore

space constraints. Phenomena of interest so far were

coherent flow characterized by velocity maps, incoher-

ent flow, and diffusion leading to hydrodynamic dis-

persion, thermal conduction, and convection causing
temperature distributions and hydrodynamic flow pat-

terns, and electric currents in electrolyte solutions. A

comprehensive description of such methods can be

found in recent reviews [6,7].

The advantage of percolation model objects first

simulated as templates on a computer and then fabri-

cated with the aid of milling [8] or lithography [9]

techniques is in the first place that pore space topologies
based on well-defined generation algorithms can be re-

alized. Another advantage is that the boundary condi-

tions of the pore space are known and can directly be

used for numerical simulations of the transport quanti-

ties. Such simulations help to plan and design experi-
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ments properly so that time and effort consuming

failures are avoided. Comparisons of experimental data

and their simulated counterparts permit one moreover

to judge the reliability both of the numerical simulation
method and of the measuring technique. The meaning-

fulness of such combined study is thus particularly well

founded.

In the present paper we report on an NMR method

for direct mapping of locally stationary accelerations of

liquids flowing through porous systems. Of course,

having a velocity map in principle implies the informa-

tion on local accelerations as well. However, flow mea-
surements with the standard phase encoding technique

anticipates [10–12] constant velocities so that the exis-

tence of any acceleration leads to additional phase shifts

causing experimental velocity artefacts. Even if a ve-

locity map were available with the required accuracy, it

always refers to average values in the voxels resolved in

the experiment. Reconstructing particle trajectories

based on such voxel-average velocities and from these
local accelerations unavoidably entails strong errors as

test experiments demonstrated. The error of such eval-

uations depends on the spatial variation of the velocity

field and the spatial resolution of the mapping experi-

ment. In other words, the correlation length of the ve-

locity field must be much larger than the spatial

resolution in order to obtain reliable acceleration vec-

tors from a velocity vector field.
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In order to avoid this difficulty it appears to be
worthwhile to directly phase encode accelerations while

phase shifts by velocities stationary with respect to

magnitude and direction are suppressed. Such direct

mapping experiments are expected to result in more

reliable voxel-average accelerations. The condition is

that the local acceleration is stationary in order to avoid

any higher-order phase encoding errors. This, however,

is not a problem, since the relatively low time resolution
of NMR microscopy always stipulates stationarity on

an imaging time scale of several minutes if not hours.

Rapidly time variable flow patterns as they occur in

turbulent flow [13–15] can be studied by NMR only in

the frame of particularly favourable time resolutions.

Here we focus on laminar flow where the local velocity

vector is a function of position but not of time.
2. The acceleration mapping technique

The basic element of phase encoding of accelerations

is a sequence of bipolar field gradients as illustrated in

Fig. 1. The effect of such gradient pulses is a phase shift

of the spin coherences proportional to the local accel-

eration whereas phase shifts by stationary velocities and
for static nuclei are compensated [11,12,16].

Consider the trajectory of a nucleus as a function of

time. The position component along the field gradient,

which is arbitrarily assumed along the x direction of the

laboratory frame, evolves according to the following

Taylor series:

xðtÞ ¼ x0 þ vx0t þ
ax0
2
t2 þ � � � ; ð1Þ

where x0, vx0, and ax0 are the initial position, velocity,

and acceleration components, respectively. Higher order

terms (referring to locally time-dependent accelerations)
Fig. 1. Bipolar field gradient pulses symmetric to the 180� radio frequency

coherences proportional to the second moment, and, hence, to the local accele

is, field gradient pulses of this sort suppress any phase shifts due to position
must be neglected due to the low time resolution in-
trinsic to magnetic resonance imaging experiments. The

experiments to be described below were furthermore

performed under conditions of locally stationary accel-

erations: All higher order terms therefore vanish by

definition. Stationary flow patterns and pressure gradi-

ents stipulate locally stationary velocities and accelera-

tions. Note that we record accelerations of spins being at

certain positions (voxels) during the measurements ra-
ther than accelerations of a certain tracer particle ex-

periencing varying accelerations when travelling

through different voxels.

The phase shift adopted in the presence of a field

gradient, Gx ¼ GxðtÞ, in the period 06 t6 T is

/ðT Þ ¼
Z T

0

X½xðtÞ�dt ¼ cn

Z T

0

GxðtÞxðtÞdt; ð2Þ

where XðxÞ ¼ cnGx is the angular frequency offset at the

position x ¼ xðtÞ due to the spatially constant field gra-
dient. Inserting Eq. (1) in Eq. (2) gives

UðT Þ ¼ cn x0

Z T

0

fðtÞGxðtÞdt|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m0

2
6664 þ vx0

Z T

0

fðtÞGxðtÞtdt|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
m1

þ 1

2
ax0

Z T

0

fðtÞGxðtÞt2 dt|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
m2

3
7775

¼ U0ðT Þ þ U1ðT Þ þ U2ðT Þ; ð3Þ

where cn is the gyromagnetic ratio and mn (n ¼ 0; 1; 2) is
the nth moment of the gradient pulse sequel during the
interval T . The function fðtÞ accounts for the phase re-

versal by the 180� RF pulse in the middle of the spin

echo pulse sequence (see Fig. 1):
(RF) pulse (dotted line) of a spin-echo sequence. Phase shifts of spin

ration are generated, whereas the zeroth and first moment vanish. That

and constant velocity.
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fðtÞ ¼ þ1 before the 180� pulse;
�1 after the 180� pulse:

ð4Þ

The problem is now to make the zeroth and first

moments vanish while the second moment remains fi-
nite. The simplest solution is the sequence shown in

Fig. 1. The zeroth and first moments obviously vanish,

i.e.,

U0ðT Þ ¼ cnx0

Z T

0

fðtÞGxðtÞdt

¼ cnx0

Z 4aþ2bþcþ8r

0

fðtÞGxðtÞdt ¼ 0 ð5Þ

and

U1ðT Þ ¼ cnvx0

Z T

0

fðtÞGxðtÞtdt

¼ cnvx0

Z 4aþ2bþcþ8r

0

fðtÞGxðtÞtdt ¼ 0: ð6Þ
Fig. 2. Typical RF and field gradient pulse sequence used for NMR accele

imaging sequence is used in combination with two pairs of bipolar gradient pu

(second) p pulse is applied in the presence of a gradient Gy and serves the sele

by gradient pulses Gz (frequency encoding) and Gx (phase encoding). The

transients. To acquire the acceleration vector field, all three components must

two pairs of bipolar gradient pulses which are also incremented in a series of

are studied in the present investigation, the data set acquired in this way con

dimensions lead to conjugated data sets describing the two in-plane accelera

sequence is kept particularly short in order to avoid flow phase encoding by

the refocusing pulse of the read gradient in the form of a negative lobe direct

encoding further (lobe drawn with broken lines).
The coherence phase shift due to the second moment
reads

U2ðT Þ ¼
1

2
cnax0

Z T

0

fðtÞGxðtÞt2 dt

¼ 1

2
cnax0

Z 4aþ2bþcþ8r

0

fðtÞGxðtÞt2 dt

¼ 1

2
cnax0Ĝx 16r3

�
þ 4a3 þ 20a2r þ 32ar2 þ 2ab2

þ 6a2bþ 2b2r þ 12br2 þ 4a2cþ 8cr2

þ 4acbþ 4cbr þ 12acr þ 18abr
�
/ ax0: ð7Þ

This phase shift is proportional to the local acceleration

and will be taken as the quantity to be mapped in the

experiments.

The complete pulse sequence for the acceleration
maps is schematically shown in Fig. 2 (leaving the gra-

dient pulse ramps away for simplicity). In this pulse

sequence, phase encoding of the acceleration compo-

nents and spatial encoding for the mapping are
ration mapping experiments. A standard (secondary) Hahn spin echo

lses. The ramps of the gradient pulses are not shown for simplicity. The

ction of the desired slice. The other two spatial dimensions are probed

phase encoding gradient, Gx is incremented in a series of successive

be probed one by one. These components are phase encoded by the first

(in our case nine) transients. For quasi two-dimensional objects as they

sists of two four-dimensional matrices. Fourier transforms in all four

tion vector components for each voxel. The imaging part of the pulse

gradient pulse pairs. In critical situations it is more favourable to place

ly before the read gradient pulse in order to reduce the undesired phase
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performed in two separate free-evolution intervals of the
spin coherences by using a secondary Hahn echo RF

pulse sequence. In principle, all phase encoding could be

done simultaneously in one free-evolution interval of an

ordinary spin echo sequence, since the gradient pulses

are incremented independently from each other. How-

ever, from the practical standpoint it turned out that the

sequential employment of the acceleration and position

phase-encoding pulses leads to more stable and reliable
results.

A certain source of experimental artefacts is that the

gradient pulses used in the second (imaging) half of the

pulse sequence are not compensated for phase shifts by

velocities. That is, the spatial phase-encoding dimension

of the imaging process may be affected by such spurious

phase shifts. In principle this could be avoided by the

use of ‘‘velocity (and acceleration) compensated’’ gra-
dient pulses [11,12]. However, the pulse would then

become too complicated. We therefore preferred to keep

the imaging part so short that such artefacts practically

did not matter. A generalized design rule for gradient

pulses compensating motion induced phase shifts of any

order [17] will be presented in the Appendix.
3. Model objects and instruments

The proposed technique was tested with liquid flow

through two different pore space model objects shown in

Figs. 3A and B. Computational fluid dynamics simula-

tions were moreover performed for the same pore space

topologies and under the same flow conditions. The test

object represented by Fig. 3A was designed on a com-
puter using the software package Gambit 2.1. The more

complex percolation cluster in Fig. 3B was produced

with the aid of a random number generator. Both

computer-generated pore space structures were fed to a

digital circuit board plotter (LPKF, ‘‘Leiterplatten–

Konturfr€asen’’) for milling the pore space into 3mm

thick polystyrene plates [1]. The milling depth was 2mm

and the position resolution of the milling machine was
6.35 lm.

The samples were composed of stacks of 10 identical

quasi two-dimensional model objects in order to im-

prove the signal-to-noise ratio. The pore space was filled

with water. It was taken care that no gas bubbles oc-

curred. Constant flow during the experiment was en-

sured by the hydrostatic pressure resulting from a

reservoir 1.5m above the sample level. The reservoir was
permanently refilled with the aid of a peristaltic pump.

The total flow rate was in the range 0.1–0.3ml/s.

The water was doped with CuSO4 in order to reduce the

spin–lattice relaxation time T1 to about 500ms. The

Reynolds number is estimated to be Re ¼ 0:2, which is

far below the critical value where turbulence starts to

become effective.
Acceleration maps were recorded using the pulse se-
quence shown in Fig. 2. The imaging parameters were:

repetition time TR ¼ 2 s, number of scans Ns ¼ 16, echo

time TE ¼ 22ms. The tomograph consisted of a home

made RF console and a 4.7 T magnet with a horizontal

40 cm room temperature bore. The resonator was of the

birdcage type. The maximum gradient was 50mT/m in

each direction (x, y, and z). All measurements were

performed at room temperature.
4. Computational fluid dynamics simulation method

The computational fluid dynamics simulations were

performed on a PC using the software package FLU-

ENT 5.5.14 based on the finite volume method (FVM).

For rendering maps the package IDL 5.3 was employed.
In the case of the circle arc test object the mesh used

was of QUAD type (see [19] for more details). The

channels were subdivided into a minimum of six smaller

subchannels. The resulting extension of the ‘‘finite’’ el-

ements was 60 lm� 60 lm. The mesh net was finer in

the interior of the channels in order to achieve a better

convergence of the solution.

In the case of the random percolation model each
matrix point was represented by 5� 5 ‘‘knots’’ or ‘‘ele-

ments.’’ The convergence criteria was set to a residuum

of 10�5. Obstacles in the pore space are defined by

vanishing flow velocity at the corresponding knots. In

this way periodic meshing was possible so that the same

resolution, 60lm� 60lm, applies to all flow paths. In

the simulation the same parameters (fluid viscosity,

pressure difference exerted to the object, and object size)
were assumed as in the NMR experiments.

The simulation of acceleration maps requires a con-

sideration different from the experimental procedure. The

FVMmethod used in the software package FLUENT 5.5

does not allow direct rendering of acceleration maps.

Rather, processing of velocity maps was necessary based

on the software package IDL5.3. For these derivations an

Eulerian approach was employed anticipating the two-
dimensional velocity vector field corresponding to our

quasi two-dimensional model objects:

~v ¼ ðvxðx; y; tÞ; vyðx; y; tÞÞ: ð8Þ
The local acceleration components in the object plane

are then given by

ax ¼ axðx; yÞ ¼
dvx
dt

¼ ovx
ot

þ ovx
ox

ox
ot

þ ovx
oy

oy
ot

¼ ovx
ot

þ ovx
ox

vx þ
ovx
oy

vy ; ð9Þ

ay ¼ ayðx; yÞ ¼
dvy
dt

¼ ovy
ot

þ ovy
ox

ox
ot

þ ovy
oy

oy
ot

¼ ovy
ot

þ ovy
ox

vx þ
ovy
oy

vy : ð10Þ



Fig. 3. Quasi two-dimensional test objects for acceleration mapping experiments and simulations. (A) Topology consisting of a series of sequential or

parallel circle arc channels of various radii (r1 ¼ 10:5mm, r2 ¼ 7:5mm, r3 ¼ 3:5mm, and r4 ¼ 3mm). The depth of the channels was 2mm and the

width was 400lm. The sections marked with I and II represent the inflow and outflow compartments, respectively. (B) Quasi two-dimensional

random site percolation cluster object (photograph) based on a square base lattice of 200� 200 sites occupied with a probability p ¼ 0:6 which is

above the percolation threshold [8,18]. The fractal dimension is df ¼ 1:9, and the correlation length is n ¼ 1:95mm.

B. Buhai et al. / Journal of Magnetic Resonance 168 (2004) 175–185 179
Under steady-state conditions, all explicit time depen-

dences vanish, i.e., ovx=ot ¼ ovy=ot ¼ 0. The derivatives
ovx
ox ;

ovx
oy ;

ovy
oy ;

ovy
ox in relations (9) and (10) are provided by the

FLUENT package. For further processing, the IDL 5.3
software was employed resulting in the desired accelera-

tion component fields. The magnitude is then obtained

from

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y

q
: ð11Þ
Note that the acceleration components given at Eqs. 9

and 10 depend on the (voxel) position but not on time

since all velocity components are assumed to be locally

stationary and merely change from position to position.
5. Results

Fig. 4 shows a comparison of experimental and sim-

ulated acceleration maps for the circle arc test object



Fig. 4. Maps of the x component (A), y component (B), and the magnitude (C) of the mean acceleration for the test structure represented by Fig. 3A.

The experimental data (right column) have been recorded with the aid of the pulse sequence shown in Fig. 2. The left column shows simulated data

for comparison.
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represented by Fig. 3A. The mean acceleration by flow
in the circle arc channels is due to changes of the velocity

vector direction (see components ax and ay in Fig. 4A

and B), whereas the mean magnitude remains constant

for given circle radius (see Fig. 4C).

The echo time was TE ¼ 26ms. For a spatial resolu-

tion Dx ¼ 386 lm the maximum velocity that can reli-

ably be detected in the experiments is limited by

Dx=TE ¼ 14:8mm/s, which is within the velocity field-of-
view, �90 mm=s < v < þ90 mm=s.

The flow distribution among the three circle arc

channels connected in parallel depends on the flow re-

sistance. For a circular cross section of the channels and

if Hagen/Poiseuille�s law for the flow rate is valid, the

flow resistance is

Q ¼ pa4DP
8Lg

; ð12Þ

where L is the length of the channel section (i.e., of a

circle arc with a certain radius) across which the pressure

difference DP is exerted, g is the viscosity of the fluid,

and a is the radius of the channel cross section. The

channel length of the ith circle arc is
Li ¼ ð2p� hiÞri i ¼ 1::3 and L1 > L2 > L3; ð13Þ

where hi and ri are the angle and the radius defining the

extension of the ith circle arc, respectively. The mean

flow velocity is related to the flow rate according to

v ¼ Q=4pa2: ð14Þ
Combining Eqs. (12)–(14) leads to a mean flow velocity

in the ith circle arc given by

vi ¼
a2DP
32gLi

i ¼ 1::3: ð15Þ

The pressure difference DP is the same for all three

channels connected in parallel. The mean flow velocity

and the channel length are consequently inversely pro-
portional to each other, so that

L1 > L2 > L3 ) v1 < v2 < v3: ð16Þ
Themean velocities v1 and v2 turned out to be too small to

be detectable in the experiments. The same consequently

applies to the acceleration. On the other hand, if the flow

rate would be increased in order to make all mean ve-

locities detectable, the problem would be that the velocity

in other sections of the object would become too large.
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The mean radial acceleration depends on the circle
arc radius according to

a ¼ v2

r
: ð17Þ
Fig. 5. Mean radial acceleration as a function of the circle arc radius in

the test object represented by Fig. 3A. The black rectangles represent

experimental data, and the dotted line was fitted according to Eq. (17).

Fig. 6. Experimental and simulated maps of the mean acceleration magnitu

random site percolation cluster (p ¼ 0:6, p � pc ¼ 0:002). The model object
Since the mean velocity in the sequential circle arcs is
constant, we expect the proportionality

a � 1

r
; ð18Þ

which is verified in the experiments with reasonable

accuracy (see Fig. 5).

Fig. 6 shows maps of the mean acceleration and mean

velocity in the random site percolation cluster shown in

Fig. 3B both for experimental and simulated data. All

matrix voxels were blackened using a matrix mask de-

duced from a black-and-white converted spin density
map. In this way, noise in matrix voxels whose phase

would be misinterpreted by the Fourier processing

analysis as a distribution of accelerations or velocities, is

avoided. The flow patterns both with respect to flow

velocity and acceleration are well reproduced in all

cases.

The percolation cluster consist of two main compo-

nents: the dead-ends that carry no flow, and the so-
called backbone which is the multiply-connected part of

the cluster through which the fluid flows [18,20]. The

suppression of stagnant zones reveals transport path-

ways more clearly in the form of the cluster backbone
de (left column) and the mean velocity magnitude (right column) in a

is shown in Fig. 3B.



Fig. 7. ‘‘Backbones’’ of the experimental transport patterns shown in Fig. 6. These maps were obtained by blackening all pixels with a velocity or an

acceleration below the respective noise level (v6 vn or a6 an). That is, all stagnant zones are removed. Only those pixels representing finite velocities

or accelerations are shown.

182 B. Buhai et al. / Journal of Magnetic Resonance 168 (2004) 175–185
[1]. The method used here was to black all voxels where

the acceleration is below the acceleration noise level,

a6 an.
There are significant differences between velocity and

acceleration maps (see Fig. 7). The velocity maps show
pathways of a more continuous character, whereas the

acceleration strongly fluctuates along the flow channels.

That is, the acceleration is only in certain voxels large

enough to be detectable above the noise level of the

experimental set-up. These sections correspond to bottle

necks and strongly curved pathways where flow is

strongly accelerated or decelerated.
6. Discussion and conclusions

It was demonstrated that accelerations in flow pat-

terns through complex porous media can directly be

mapped by an NMR technique in addition to conven-

tional flow velocity mapping. Since all transport quan-

tities recorded by NMR microscopy techniques refer to
voxel averages, the direct measurement of spatial ac-

celeration distributions is considered to be more reliable

than the reconstruction based on maps of the mean

velocity.

Acceleration maps specifically highlight bottlenecks

and strongly curved pathways of flow. They are there-

fore considered to be indicative for corresponding to-

pology elements of the pore space.
In our previous papers [1–5] we pursued the strategy

to use maps of transport quantities for the assessment of

laws relating parameters of the pore space structure and

of the transport patterns. This objective is facilitated by

well-defined model percolation clusters where the pore

space is defined by complete coordinate sets. Boundary

conditions on this basis can be used for computational
fluid dynamics simulations which then can be compared

with experimental data. In all cases good coincidence

was found. That is, the simulation method, the fabri-

cation procedure of the model objects, and the NMR

mapping technique are shown to be reliable and essen-
tially free of artefacts. Simulations can thus be used to

design experimental protocols and to predict the feasi-

bility of investigations prior to the experiments. This

sort of examination is expected to be useful in the broad

porous media field where experimental techniques and

the theoretical background are still in a rather rudi-

mentary state [20–27].

The present study refers to (quasi) two-dimensional
pore spaces. The extension to three dimensions is readily

possible but time consuming, since then three four-di-

mensional data sets have to be acquired for the three

components of the acceleration vector. In this respect a

combination with fast imaging techniques is expected to

be favourable [23,24].
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Appendix A. The ‘‘polygon rule’’

The gradient pulse train shown in Figs. 1 and 2

produce phase shifts proportional to stationary accel-

erations. Other, more complicated variants serving the

same purpose exist provided that the corresponding

moment conditions are fulfilled. The question to be dealt

with in this appendix is whether there is a general rule



Fig. 9. Field-gradient pulse sequences for the compensation of phase

shifts due to stationary accelerations: (A) Gradient pulse train based on

different gradient amplitudes proposed in [25]. (B) Gradient pulse train

based on alternating gradients proposed in [16]. (C) Gradient pulse train

designed according to the polygon rule (j ¼ 2; N ¼ jþ 2 ¼ 4).
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permitting one to design the simplest gradient pulse se-
quences for the compensation of phase shifts due to any

order of motions so that phase shifts due to all higher

orders become selectively relevant.

The position of a nucleus can be represented by the

expansion

~rðtÞ ¼~r0 þ~t0t þ
~a0t2

2
þ � � � ; ðA:1Þ

where~r0,~t0, and~a0 are the initial position, velocity, and
acceleration vectors, respectively. The phase shift in an
interval T in the presence of time-varying gradients ~GðtÞ
is given by

/ðT Þ ¼ c
Z T

0

~GðtÞ �~rðtÞdt: ðA:2Þ

Inserting Eq. (18) gives the moment series

/ðT Þ ¼ c ~r0 �
Z T

0

~GðtÞdt
�

þ~t0 �
Z T

0

~GðtÞtdt

þ 1

2
~a0 �

Z T

0

~GðtÞt2 dt þ � � �
�

¼ /0ðT Þ þ /1ðT Þ þ /2ðT Þ þ � � � : ðA:3Þ

Motion-compensated gradient pulse trains making

the diverse orders in Eq. (A.3) vanish consist of alter-

nating gradient lobes arranged symmetrically (no 180�
RF pulse in between) or inversely symmetrically (with

an intermittent 180� RF pulse). The pulse trains shown

in Figs. 1 and 2 are examples of the 180� pulse variant,
those shown in Figs. 8 and 9 are valid in the absence of

180� pulses.
Consider now a gradient pulse train including N al-

ternating lobes of durations s1 . . . sN and equal ampli-

tudes of integer multiples of Ĝ, where no RF pulses are

involved. That is, rectangular gradient pulse shapes are

assumed neglecting any switching ramps (see Fig. 8).

The scalar vector products in Eq. (A.3) mean that only
Fig. 8. Typical gradient lobe trains for the compensation of phase

shifts due to positions (j ¼ 0), stationary velocities (j ¼ 1) and sta-

tionary accelerations (j ¼ 2) in the absence of any 180� RF pulses.
collinear components for the gradient vector and the

dynamic motion vectors are relevant. We will denote

these components by Ĝ and J , where J stands for rx0, vx0,
ax0, etc. The jth order phase shift thus reads

/jðT Þ¼
1

ðjþ1Þ!cJĜ 2sjþ1
1

h
þ�� �þ2ð�1ÞN�1

�ðs1þ�� �þ sN�1Þjþ1þð�1ÞN ðs1þ�� �þ sN Þjþ1
i
:

ðA:4Þ

For example, the second-order term representing phase

shifts due to stationary accelerations is

/2ðT Þ ¼
1

6
ca0Ĝ 2s31

h
� 2ðs1 þ s2Þ3 þ � � � þ 2ð � 1ÞN�1

�ðs1 þ � � � þ sN�1Þ3 þ ð � 1ÞN ðs1 þ � � � þ sN Þ3
i
:

ðA:5Þ

There is a mathematically simple method for the

calculation of the gradient lobe widths leading to van-

ishing jth and lower order phase shifts. The number of

the lobes must be N ¼ jþ 2. The duration of the lobes

can be expressed by

si ¼ s
sin p i�1

jþ2

� 	
þ sin p i

jþ2

� 	
sin p

jþ2

� 	 ; ðA:6Þ

where s � s1. For example, if j ¼ 2 and N ¼ 4 we have

s1 ¼ s, s2 ¼ ð1þ
ffiffiffi
2

p
Þs, s3 ¼ ð1þ

ffiffiffi
2

p
Þs, s4 ¼ s for

an acceleration compensated gradient pulse train. The



Fig. 10. The polygon rule for the determination of the pulse lengths implied in motion compensating gradient pulse sequences. For the compensation

of phase shifts due to the jth and lower motion orders one needs N ¼ jþ 2 gradient lobes. The sign of the gradient lobes is alternating in the sequence

of their appearance (if no phase inverting 180� RF pulse is applied in between). An N -fold polygon (solid lines) is formed with the ‘‘origin’’ in point

A. Auxiliary rays (dotted lines) are drawn from A to the other polygon corners. The durations of the gradient lobes are then proportional to the

lengths (of the first and last lobe) or double sums of adjacent line-segments (see the shadowed expressions). (A) Compensation of phase shifts due to

stationary accelerations, velocities, and positions; phase encoding due to higher order motions: The maximum order to be compensates is j ¼ 2. The

number of gradient lobes consequently is N ¼ jþ 2 ¼ 4, the polygon order 4, i.e., a square. (B) Compensation of phase shifts due to fourth and lower

order motions (j ¼ 4). The number of alternating gradient lobes consequently is N ¼ jþ 2 ¼ 6, and the polygon order is 6.
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zeroth, first and second moments vanish if the gradient

pulse train takes the form (see Figs. 8 and 9C):

GðtÞ ¼

Ĝ for 06 t < s;
�Ĝ for s6 t < sð2þ

ffiffiffi
2

p
Þ;

Ĝ for sð2þ
ffiffiffi
2

p
Þ6 t < sð3þ 2

ffiffiffi
2

p
Þ;

�Ĝ for sð3þ 2
ffiffiffi
2

p
Þ6 t < sð4þ 2

ffiffiffi
2

p
Þ;

0 otherwise:

8>>>><
>>>>:

ðA:7Þ

Note that this ‘‘acceleration-compensated’’ gradient

pulse train (Fig. 9C) deviates from other sequences
known from literature and represented by Figs. 8A and

B [17,25–27]. The advantage of the pulse train repre-

sented by Eq. (A.7) and Fig. 9C is obvious: It is simpler

than those given at Figs. 9A and B with respect to the

number of lobes and the variation of the gradient

strength.

There is a geometrical rule (the ‘‘polygon rule’’)

permitting the design of motion compensating gradient
pulse trains of any order. Compare Fig. 10A with

Fig. 9C (or Eq. (A.7)) producing velocity compensated

phase shifts proportional to accelerations. The durations

of the gradient lobes are proportional to the lengths (in

the case of the first and the last lobe) and double sums of

adjacent line-segments forming a mesh in a rectilinear

N -sided polygon, where N is the number of gradient

lobes needed. Auxiliary rays originating in point A of
the polygon are considered, and adjacent line sections

on these rays are added to give the gradient lobe lengths.

Fig. 10B represents the polygon needed for the design

of gradient pulse sequence compensating up to the sixth

motion order. Six alternating lobes of duration
s1 ¼ jABj ¼ s, s2 ¼ jABj þ jACj ¼ sþ
ffiffiffi
3

p
s, s3 ¼ jACj þ

jADj ¼
ffiffiffi
3

p
sþ 2s, s4 ¼ jADj þ jAEj ¼ 2sþ

ffiffiffi
3

p
s, s5 ¼

jAEj þ jAF j ¼
ffiffiffi
3

p
sþ s, and s6 ¼ jAF j ¼ s are suggested

in this case.
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